Soluciones y Conductividad Eléctrica
(PROFUNDIZADO)
Por:
José Francisco Alarcón Fierro
Jhonatan Lavao Osorio
Juan David Plazas Losada
10.01
Doc. Mercy Medina Rojas
INSTITUCION EDUCATIVA PROMOCION SOCIAL
PALERMO (H) 15/09/2010
Nuestro Proyecto será abordado de la siguiente manera:
1. Investigación teórica para la elaboración de un trabajo escrito.
2. Utilización de las Tics como ayuda para la ejecución del proyecto.
3. Fabricación de Plegables en Publisher.
4. Elaboración experimental del proyecto.
5. Elaboración de un Blog en internet para la presentación del proyecto.
6. Filmación de un video representando el proyecto en su experimentación.
7. Realizar la exposición en clase tomando como base de los anteriores Tics.
Introducción
Las determinaciones de la conductividad recibe el nombre de determinación conductométricas. Estas determinaciones tienen una cantidad de aplicaciones.
En primer lugar, la conductividad de las soluciones desempeña un importante papel en las aplicaciones industriales de la electrólisis, ya que el consumo de energía eléctrica en la electrólisis depende en gran medida de ella.
En primer lugar, la conductividad de las soluciones desempeña un importante papel en las aplicaciones industriales de la electrólisis, ya que el consumo de energía eléctrica en la electrólisis depende en gran medida de ella.
Las determinaciones de la conductividad se usan ampliamente en los estudios de laboratorios. Así, se las puede usar para determinar el contenido de sal de varias soluciones durante la evaporación del agua (por ejemplo en el agua de calderas o en la producción de leche condensada). Las basicidades de los ácidos pueden ser determinadas por mediciones de la conductividad.
El método conductimétrico puede usarse para determinar las solubilidades de electrólitos escasamente solubles y para hallar concentraciones de electrólitos en soluciones por titulación.
La base de las determinaciones de la solubilidad es que las soluciones saturadas de electrólitos escasamente solubles pueden ser consideradas como infinitamente diluidas. Midiendo la conductividad específica de semejante solución y calculando la conductividad equivalente según ella, se halla la concentración del electrólito, es decir, su solubilidad.
Un método práctico sumamente importante es el de la titulación conductométrica, o sea la determinación de la concentración de un electrólito en solución por la medición de su conductividad durante la titulación. Este método resulta especialmente valioso para las soluciones turbias o fuertemente coloreadas que con frecuencia no pueden ser tituladas con el empleo de indicadores.
ENLACE IONICO
Consiste en la atracción electrostática entre átomos con cargas eléctricas de signo contrario. Este tipo de enlace se establece entre átomos de elementos poco electronegativos con los de elementos muy electronegativos. Cuando una molécula de una sustancia contiene átomos de metales y no metales, los electrones son atraídos con más fuerza por los no metales, que se transforman en iones con carga negativa; los metales, a su vez, se convierten en iones con carga positiva. Entonces, los iones de diferente signo se atraen electrostáticamente, formando enlaces iónicos.
Las sustancias iónicas conducen la electricidad cuando están en estado líquido o en disoluciones acuosas, pero no en estado cristalino, porque los iones individuales son demasiado grandes para moverse libremente a través del cristal.
Luego de observar los cambios se obtiene que las sustancias o mezclas que fueron portadoras de corriente eléctrica, y por ende lograron que la ampolleta se prendiese tiene enlace iónico y por otro lado las sustancias que no lograron tener conductividad eléctrica son aquellas que poseen enlace covalente en base a estos resultados se puede concluir que las propiedades físicas y específicamente la de conductividad logran identificar el tipo de enlace que existe en la sustancia de una forma rápida y simple.
ENLACE COVALENTE
La combinación de no metales entre sí no puede tener lugar mediante este proceso de transferencia de electrones, en estos casos, el enlace consiste en una compartición de electrones; el enlace covalente es la formación de pares electrónicos compartidos, independientemente de su número.
El par compartido es aportado por sólo uno de los átomos formándose entonces un enlace que se llama coordinado o dativo.
Si los átomos son no metales pero distintos (como en el óxido nítrico, NO), los electrones son compartidos en forma desigual y el enlace se llama covalente polar porque la molécula tiene un polo eléctrico positivo y otro negativo, y covalente porque los átomos comparten los electrones, aunque sea en forma desigual. Estas sustancias no conducen la electricidad, ni tienen brillo, ductilidad o maleabilidad.
Conductibilidad
Ningún solvente puro conduce la corriente eléctrica. Y ningún soluto puro conduce la corriente eléctrica, a menos que este en estado líquido. Pero una solución puede conducir la corriente. Para que esto suceda, la solución debe estar formada por un soluto electrolito (es decir, compuestos formado por enlaces iónicos no orgánicos) y por un solvente polar como el agua, lo cual forma una solución electrolita.
Las soluciones de NaCl (sal común) o CuSO4 (sulfato cúprico) en agua conducen la electricidad a toda su intensidad. Pero, el acido acético o vinagre común (CH3-COOH) al disolverse en agua produce iones los cuales pueden conducir la electricidad, pero solo levemente.
Las sustancias iónicas conducen la electricidad cuando están en estado líquido o en disoluciones acuosas, pero no en estado cristalino, porque los iones individuales son demasiado grandes para moverse libremente a través del cristal.
Conductividad del enlace covalente
La falta de conductividad en estas sustancias se puede explicar porque los electrones de enlace están fuertemente localizados atraídos por los dos núcleos de los átomos enlazados. La misma explicación se puede dar para las disoluciones de estas sustancias en disolventes del tipo del benceno, donde se encuentran las moléculas individuales sin carga neta moviéndose en la disolución. Dada la elevada energía necesaria para romper un enlace covalente, es de esperar un elevado punto de fusión cuando los átomos unidos extiendan sus enlaces en las tres direcciones del espacio como sucede en el diamante; no obstante, cuando el número de enlaces es limitado como sucede en la mayor parte de las sustancias (oxígeno, hidrógeno, amoníaco, etc.) con enlaces covalentes, al quedar saturados los átomos enlazados en la molécula, la interacción entre moléculas que se tratará más adelante, será débil, lo que justifica que con frecuencia estas sustancias se encuentren en estado gaseoso a temperatura y presión ordinarias y que sus puntos de fusión y ebullición sean bajos.
· La conductividad en los electrólitos fuertes como el HCl y NaOH es mucho mayor que la conductividad de los electrólitos débiles como el ácido acético.
· A medida que la concentración disminuye, las conductividades equivalentes aumentan debido a que los iones cargados no pueden ejercer influencia unos sobre otros al moverse hacia los electrodos, esto especialmente en soluciones de electrólitos débiles.
· La conductividad equivalente del electrólito débil (ácido acético) disminuye rápidamente al aumento de la concentración de la solución debido a que este ácido se disocia más a mayor dilución por lo que a una mayor concentración la presencia de iones será mínima.
· La conductividad eléctrica (l) como la conductividad especifica (K) disminuyen con la dilución, no siendo así la conductividad equivalente ( ); la cual aumenta con la dilución, en nuestro caso es notorio ya que se trabaja con el ácido acético el cual es un electrólito débil, esto se verifica en la gráfica vs. N
· El grado de disociación de los iones aumenta con la dilución, es por eso que en una dilución infinita la conductividad la conductividad infinita depende de la velocidad de los iones, así como la temperatura a la que se trabaja ya que a mayor temperatura aumentara.
Recomendaciones:
· Para la práctica es recomendable el uso de agua destilada lo más pura posible para evitar la presencia de cualquier sustancia extraña en la solución que puede producir variaciones en el valor de la conductividad.
· El electrodo para la medición deberá ser lavado muy bien y totalmente secado para evitar que lleve impurezas a las demás soluciones.
· La temperatura debe ser mantenida constante para evitar, también errores en la toma de las conductividades de las diferentes soluciones.
· Antes de utilizar el conductímetro con las soluciones y diluciones se debe estandarizar a la temperatura observada.
· Debe valorarse cuidadosamente cada solución para obtener una concentración precisa de cada solución.
· Evitar que el electrodo toque el fondo de la probeta o sus paredes; porque podría medir la conductividad del vidrio.
Bibliografía
· Castelan W., "Fisicoquímica", 2da edición, Fondo Interamericano S.A., México 1978. Pág. 462 – 465.
· Farrington Daniels, "Tratado de Fisicoquímica", 2da edición, Ed. Continental, México 1984, Pág 165 – 169.